	Author
	Greg Golberg (greg.golberg@totaletl.com)

	Last updated
	September 18, 2004

InfoSight In a Nutshell

Any philosophy that can be put into a nutshell belongs there.

-- Sydney J. Harris
Keywords

Data mart, data warehouse, reporting, SQL, RDBMS, database, relational, XML, ETL, Java, portable.

Core Functionality

We make an ETL (extract-transform-load solution), so that a user can, by using a user-friendly GUI:

1. Extract data from a number of various sources, such as:

a. RDBMS (such as Oracle, MS SQL Server, DB2, MySQL, Access, Informix, mSQL, Sybase, etc.) – here, anything, indeed, for which a JDBC driver is available, which pretty much covers all RDBMS these days.

b. Structured text files (fixed-width or delimited, such as CSV, etc.)

c. MS Excel spreadsheets (other spreadsheets under development)

d. XML (under development)

e. Unstructured streams (under development). The data can be extracted based on patterns (e.g., regexps). This includes:

i. Unstructured plain text files.

ii. Commonly formatted (MS Word, PDF, etc.), for which the patterns may include not just patterns based on their plain text representation, but based on formatting.

f. Whatever else may be deemed necessary or requested by users (but see also Extensibility section below!).

2. Transform this data by performing operations such as:

a. Filter (filter out records not conforming to certain conditions) – cf. SQL “where <field> <relation> <constant>” clause.

b. Sort

c. Merge (cf. SQL’s UNION/INTERSECTION/MINUS operations).

d. Dedup (remove duplicates)

e. Join (as in relational join, which could be an inner (or equi-)join, or an outer join.

f. Aggregate (cf. SQL’s “GROUP BY” clause), for instance, select AVG, MIN, MAX, STD DEV, etc. on a group of records.

g. Inline transform – that is, create new fields out of existing ones, performing various operations on them (or just creating new values), such as:

i. Mathematical operations:

1. Standard arithmetic operations, such as addition, division, subtraction, multiplication, modulo (integer) division, remainder, raising to a power.

2. Trigonometric and other scientific functions (e.g., sin/cos, log, etc.)

ii. String operations (PAD, CONCAT, REPLACE, FORMAT – such as, format a number to certain decimal places, or date to some format – e.g., Sep.19, 2004 vs. 09/19/2004 vs. 09/19/04 vs. 19.09.2004, etc.)

iii. Volatile – that is, data provided based on some external, data-independent, circumstances. For instance, current TIMESTAMP, something based on current environment settings (file names, etc.), etc.

h. Branch (under development) – similar to Filter (see item 2.a above), except that the data from this transformer can be fed into several other Transformers (or Loaders), based on some condition. For instance, all records with sales of less than $100,000 are fed into one table, from $100,000 to $1,000,000 into another one, from $1,000,000 to $5,000,000 into a third one, the rest into a forth one.

3. Load the results into any kind of data repository – those supported are also the types that the information can be extracted from (see item 1 above).

For a technical (IT/DBA/software) person, it can conceivably be described as a SQL (but not only SQL) engine that can work across heterogeneous data sources and targets (as opposed to be able to perform complex SQL queries only against one source).

User Experience

A user can:

1. Create and edit a data flow in a GUI

2. Preview data at each point in the flow to see that his/her logic is correct. Even when the data flow is complex, parts of it can be run and previewed independently of others that are still under development.

3. Save the data flow into an XML file describing it, to load and edit it further later

a. Note: the format of the XML file is such that it is feasible for an advanced user to edit it directly, if necessary, without resorting to GUI. See also item 5 below.

4. Run the created data flow from the GUI

5. Run the created data flow in a batch mode by, for instance, scheduling a job to be submitted to the InfoSight server.

6. In the future (how soon would be determined by demand, since the architecture is there), an advanced user would be able to take advantage of the plug-in features of the product (see Extensibility section below).

Extensibility

The product is designed with the philosophy of crating smaller logical building blocks with the use which more complex functionality can be built.

Thus, it includes a pluggable architecture, which makes it easy to create new components, such as Transformers (see above), Extractors and Loaders (see above), Inline Functions (see item 2(g) in Core section above), Data definitions (explicit definitions of metadata for data sources and targets that do not have meta data already associated with them, such as text files (see item 1(b) in Core section above), unstructured streams (see item 1(e) in Core section above), etc.

Furthermore, the ease of creation of these new components is not limited to TotalETL! Conceivably users can even do it on their own without our participation, by either:

1. Writing Java code conforming to our API (which would then be dynamically picked up by the application and treated just as our own components),

2. In the near future, describing components in an even simpler way, which would be translated to the conforming API by the product.

Finally, this is a 100% pure Java solution that can be deployed on any platform.

InfoSmart

InfoSmart is a next-generation version tailored to be an enterprise solution. It would include more sophisticated distributed technology (for performance), two-phase commit, etc.

